Том как устроен самолет какие. Как устроен самолет

Самолёт – воздушное судно, без которого сегодня представить перемещение людей и грузов на большие расстояния невозможно. Разработка конструкции современного самолета, а также создание отдельных его элементов представляется важной и ответственной задачей. К этой работе допускают только высококвалифицированных инженеров, профильных специалистов, так как небольшая ошибка в расчётах или производственный брак приведут к фатальным последствиям для пилотов и пассажиров. Не представляет секрет, что любой самолёт имеет фюзеляж, несущие крылья, силовой агрегат, систему разнонаправленного управления и взлетно-посадочные устройства.

Ниже изложенная информация об особенностях устройства составных частей самолёта будет интересна для взрослых и детей, занимающихся конструкторской разработкой моделей летательных аппаратов, а также отдельных элементов.

Фюзеляж самолёта

Основной частью самолета является фюзеляж. На нем закрепляются остальные конструктивные элементы: крылья, хвост с оперением, шасси, а внутри размещается кабина управления, технические коммуникации, пассажиры, грузы и экипаж воздушного судна. Корпус самолёта собирается из продольных и поперечных силовых элементов, с последующей обшивкой металлом (в легкомоторных версиях – фанерой или пластиком).

Требования при проектировании фюзеляжа самолёта предъявляется к весу конструкции и максимальным характеристикам прочности. Добиться этого позволяет использование следующих принципов:

  1. Корпус фюзеляжа самолёта выполняется в форме, снижающей лобовое сопротивление воздушным массам и способствующей возникновению подъемной силы. Объем, габариты самолёта должны быть пропорционально взвешены;
  2. При проектировании предусматривают максимально плотную компоновку обшивки и силовых элементов корпуса для увеличения полезного объема фюзеляжа;
  3. Сосредотачивают внимание на простоте и надежности крепления крыловых сегментов, взлётно-посадочного оборудования, силовой установки;
  4. Места крепления грузов, размещения пассажиров, расходных материалов должны обеспечивать надёжное крепление и баланс самолёта при различных условиях эксплуатации;

  1. Место размещения экипажа должно предоставлять условия комфортного управления самолётом, доступ к основным приборам навигации и управления при экстремальных ситуациях;
  2. В период обслуживания самолёта предусмотрена возможность беспрепятственно провести диагностику и ремонт вышедших из строя узлов и агрегатов.

Прочность корпуса самолёта обязана обеспечивать противодействие нагрузкам при различных полётных условиях, в том числе:

  • нагрузки в местах крепления основных элементов (крылья, хвост, шасси) в режимах взлёта и приземления;
  • в полётный период выдерживать аэродинамическую нагрузку, с учётом инерционных сил веса самолёта, работы агрегатов, функционирования оборудования;
  • перепады давления в герметически ограниченных отделах самолёта, постоянно возникающие при лётных перегрузках.

К основным типам конструкции корпуса самолёта относят плоский, одно,- и двухэтажный, широкий и узкий фюзеляж. Положительно зарекомендовали себя и используются фюзеляжи балочного типа, включающие варианты компоновки, которые носят название:

  1. Обшивочные – конструкция исключает продольно расположенные сегменты, усиление происходит за счёт шпангоутов;
  2. Лонжеронные – элемент имеет значительные габариты, и непосредственная нагрузка ложится именно на него;
  3. Стрингерные – имеют оригинальную форму, площадь и сечение меньше, чем в лонжеронном варианте.

Важно! Равномерное распределение нагрузки на все части самолёта осуществляется за счёт внутреннего каркаса фюзеляжа, который представлен соединением различных силовых элементов по всей длине конструкции.

Конструкция крыла

Крыло – один из основных конструктивных элементов самолёта, обеспечивающий создание подъёмной силы для полёта и маневрирования в воздушных массах. Крылья используют для размещения взлётно-посадочных устройств, силового агрегата, топлива и навесного оборудования. От правильного сочетания веса, прочности, жёсткости конструкции, аэродинамики, качества изготовления зависят эксплуатационные и лётные характеристики самолёта.

Основными частями крыла называется следующий перечень элементов:

  1. Корпус, сформированный из лонжеронов, стрингеров, нервюров, обшивки;
  2. Предкрылки и закрылки, обеспечивающие плавный взлёт и посадку;
  3. Интерцепторы и элероны – посредством них осуществляется управление самолётом в воздушном пространстве;
  4. Щитки тормозные, предназначенные для уменьшения скорости движения во время посадки;
  5. Пилоны, необходимые для крепления силовых агрегатов.

Конструктивно-силовая схема крыла (наличие и расположение деталей при нагрузочном воздействии) должна обеспечивать устойчивое противодействие силам кручения, сдвига и изгиба изделия. К ней относятся продольные, поперечные элементы, а также внешняя обшивка.

  1. К поперечным элементам относят нервюры;
  2. Продольный элемент представлен лонжеронами, которые могут быть в виде монолитной балки и представлять ферму. Располагаются по всему объёму внутренней части крыла. Участвуют в придании жёсткости конструкции, при воздействии сгибающей и поперечной силы на всех этапах полёта;
  3. Стрингер также относят к продольным элементам. Его размещение – вдоль крыла по всему размаху. Работает как компенсатор осевого напряжения нагрузок изгиба крыла;
  4. Нервюры – элемент поперечного размещения. В конструкции представлены фермами и тонкими балками. Придаёт профиль крылу. Обеспечивает жесткость поверхности при распределении равномерной нагрузки во время создания полётной воздушной подушки, а также крепления силового агрегата;
  5. Обшивка придаёт форму крылу, обеспечивая максимальную аэродинамическую подъёмную силу. Вместе с другими элементами конструкции увеличивает жёсткость крыла и компенсирует действие внешних нагрузок.

Классификация крыльев самолёта осуществляется в зависимости от конструктивных особенностей и степени работы наружной обшивки, в том числе:

  1. Лонжеронного типа. Характеризуются незначительной толщиной обшивки, образующей замкнутый контур с поверхностью лонжеронов.
  2. Моноблочного типа. Основная внешняя нагрузка распределяется по поверхности толстой обшивки, закреплённой массивным набором стрингеров. Обшивка может быть монолитной или состоять из нескольких слоёв.

Важно! Стыковка частей крыльев, последующее их крепление должны обеспечивать передачу, распределение изгибающего и крутящего моментов, возникающих при различных режимах эксплуатации.

Авиадвигатели

Благодаря постоянному совершенствованию авиационных силовых агрегатов продолжается развитие современного самолётостроения. Первые полёты не могли быть длительными и совершались исключительно с одним пилотом именно потому, что не существовало мощных двигателей, способных развить необходимую тяговую силу. За весь прошедший период авиацией использовались следующие типы двигателей самолёта:

  1. Паровые. Принцип работы заключался в преобразовании энергии пара в поступательное движение, передающееся на винт самолёта. Из-за низкого коэффициента полезного действия использовался непродолжительное время на первых авиамоделях;
  2. Поршневые – стандартные двигатели с внутренним сгоранием топлива и передачей крутящего момента на винты. Доступность изготовления из современных материалов позволяет их использование до настоящего времени на отдельных моделях самолётов. КПД представлен не более 55.0%, но высокая надежность и неприхотливость в обслуживании делают двигатель привлекательным;

  1. Реактивные. Принцип действия основан на преобразовании энергии интенсивного сгорания авиационного топлива в необходимую для полёта тягу. Сегодня такой тип двигателей наиболее востребован в авиастроительстве;
  2. Газотурбинные. Работают по принципу пограничного нагрева и сжатия газа сгорания топлива, направленного на вращение турбинного агрегата. Получили широкое распространение в авиации военного назначения. Используются в самолётах типа Су-27, МиГ-29, F-22, F-35;
  3. Турбовинтовые. Один из вариантов газотурбинных двигателей. Но полученная при работе энергия преобразовывается в приводную для винта самолёта. Небольшая её часть используется для образования реактивной толкающей струи. Применяют, в основном, в гражданской авиации;
  4. Турбовентиляторные. Характеризуются высоким КПД. Применяемая технология нагнетания дополнительного воздуха для полного сгорания топлива обеспечивает максимальную эффективность работы и высокую экологическую безопасность. Такие двигатели нашли своё применение при создании больших авиалайнеров.

Важно! Перечень двигателей, разрабатываемых авиаконструкторами, вышеуказанным перечнем не ограничивается. В разное время неоднократно принимались попытки создавать различные вариации силовых агрегатов. В прошлом веке даже велись работы по конструированию атомных двигателей в интересах авиации. Опытные образцы были опробованы в СССР (ТУ-95, АН-22) и США (Convair NB-36H), но были сняты с испытания в связи с высокой экологической опасностью при авиационных катастрофах.

Органы управления и сигнализации

Комплекс бортового оборудования, командные и исполнительные устройства самолёта называют органами управления. Команды подаются из пилотной кабины, а выполняются элементами плоскости крыла, оперением хвоста. На разных типах самолётов используются различные типы систем управления: ручная, полуавтоматическая и полностью автоматизированная.

Органы управления, независимо от типа системы управления, разделяют следующим образом:

  1. Основное управление, включающее в себя действия, отвечающие за регулировку лётных режимов, восстановление продольного баланса самолёта в заранее заданных параметров, они включают:
  • рычаги, непосредственно управляемые пилотом (штурвал, рули высоты, горизонта, командные панели);
  • коммуникации для соединения управляющих рычагов с элементами исполнительных механизмов;
  • непосредственные исполняющие устройства (элероны, стабилизаторы, сполерные системы, закрылки, предкрылки).
  1. Дополнительное управление, используемое при взлётном или посадочном режимах.

При применении ручного или полуавтоматического управления воздушным судном пилота можно считать неотъемлемой частью системы. Только он может проводить сбор и анализ информации о положении самолёта, нагрузочных показателях, соответствии направления полёта с плановыми данными, принимать соответствующее обстановке решение.

Для получения объективной информации о лётной обстановке, состоянии узлов самолёта пилот использует группы приборов, назовем основные:

  1. Пилотажные и используемые для навигационных целей. Определяют координаты, горизонтальное и вертикальное положение, скорость, линейные отклонения. Контролируют угол атаки по отношению к встречному потоку воздуха, работу гироскопических устройств и многие не менее значимые параметры полёта. На современных моделях самолётов объединены в единый пилотажно-навигационный комплекс;
  2. Для контроля работы силового агрегата. Обеспечивают пилота информацией о температуре и давлении масла и авиационного топлива, расход рабочей смеси, количество оборотов коленчатых валов, вибрационный показатель (тахометры, датчики, термометры и подобное);
  3. Для наблюдения за функционированием дополнительного оборудования и авиационных систем. Включают в себя комплекс измерительных приборов, элементы которого размещены практически во всех конструктивных частях самолёта (манометры, указателя расходования воздуха, перепада давления в герметических закрытых кабинах, положения закрылков, стабилизирующих устройств и тому подобное);
  4. Для оценки состояния окружающей атмосферы. Основными измеряемыми параметрами являются температура наружного воздуха, состояние атмосферного давления, влажность, скоростные показатели перемещения воздушных масс. Используются специальные барометры и другие адаптированные измерительные приборы.

Важно! Измерительные приборы, используемые для мониторинга состояния машины и внешней среды, специально разработаны и адаптированы для сложных условий эксплуатации.

Взлётно-посадочные системы 2280

Взлёт и посадку считают ответственными периодами при эксплуатации самолёта. В этот период возникают максимальные нагрузки на всю конструкцию. Гарантировать приемлемый разгон для поднятия в небо и мягкое касание поверхности посадочной полосы могут только надёжно сконструированные стойки шасси. В полете они служат дополнительным элементом придания жесткости крыльям.

Конструкция наиболее распространённых моделей шасси представлена следующими элементами:

  • подкос складной, компенсирующий лотовые нагрузки;
  • амортизатор (группа), обеспечивает плавность хода самолёта при движении по взлетно-посадочной полосе, компенсирует удары во время контакта с землёй, может устанавливаться в комплекте с демпферами-стабилизаторами;
  • раскосы, выполняющие роль усилителя жесткости конструкции, могут называться стержнями, располагаются диагонально по отношению к стойке;
  • траверсы, крепящиеся к конструкции фюзеляжа и крыльям стойки шасси;
  • механизм ориентирования – для управления направлением движения на полосе;
  • замочные системы, обеспечивающие крепление стойки в необходимом положении;
  • цилиндры, предназначенные для выпуска и убирания шасси.

Сколько колес размещено у самолета? Количество колёс определяется в зависимости от модели, веса и назначения воздушного судна. Наиболее распространённым считают размещение двух основных стоек с двумя колёсами. Более тяжёлые модели – трёх стоечные (размещены под носовой частью и крыльях), четырёх стоечные – две основные и две дополнительные опорные.

Видео

Описанное устройство самолета даёт лишь общее представление об основных конструктивных составляющих, позволяет определить степень важности каждого элемента при эксплуатации воздушного судна. Дальнейшее изучение требует глубокой инженерной подготовки, наличия специальных знаний аэродинамики, сопротивления материалов, гидравлики и электрооборудования. На производственных предприятиях авиастроения этими вопросами занимаются люди, прошедшие обучение и специальную подготовку. Самостоятельно изучить все этапы создания самолёта можно, только для этого следует запастись терпением и быть готовым к получению новых знаний.

Самолет принято расчленять на основные части или агрегаты, законченные в конструктивном или технологическом отношении. К таким частям относят крыло, фюзеляж, горизонтальное и вертикальное оперение, шасси, силовую установку, систему управления и оборудование.

Крыло самолета (рис. 2.2) создает подъемную силу и обеспечивает поперечную устойчивость и управляемость. К крылу часто крепятся двигатели, шасси, топливные баки, вооружение. Внутренние объемы крыла используются для расположения топлива, противообледенительных устройств и другого оборудования. Крылья самолетов снабжаются средствами механизации для улучшения взлетно-посадочных характеристик.

Рис. 2.2. Общий вид и компоновочная схема самолета

Фюзеляж или корпус служит для размещения экипажа, пассажиров или грузов, двигателей, передних ног шасси и соединяет все части самолета в одно целое.

Горизонтальное оперение обеспечивает продольную устойчивость, управляемость и балансировку. Оно состоит из неподвижной части – стабилизатора и подвижной – руля высоты.

Вертикальное оперение осуществляет путевую устойчивость, управляемость балансировку; состоит из неподвижной части – киля и подвижной – руля направления.

Шасси представляет систему опор, предназначенных для взлета, пробега после посадки, передвижения по аэродрому и стоянки. Конструкция шасси имеет упругие элементы, поглощающие кинетическую энергию самолета.

Силовая установка предназначена для создания силы тяги и включает комплекс двигателей с системами, обеспечивающими их работу, и воздушные винты (для самолетов с ТВД и ПД).

Система управления включает командные посты управления, проводку управления и органы управления (рули). Предназначена для управления самолетом по заданной траектории.

Оборудование самолетов представляет собой комплекс устройств, обеспечивающих безопасность полета самолета в сложных погодных условиях и на разных высотах. Включает в себя электрическое, гидравлическое, радиотехническое, пилотажно-навигационное, высотное и другое оборудование самолета.

Компоновка самолета

Компоновкой самолета называют процесс пространственной увязки частей самолета, размещение грузов, пассажиров, экипажа, топлива, оборудования. Общая компоновка самолета включает аэродинамическую, внутреннюю (или весовую) и конструктивно-силовую компоновку.

Аэродинамическая компоновка состоит в выборе схемы самолета, взаимного расположения частей и придания самолету аэродинамических форм. Поскольку аэродинамическая схема задана, то при выполнении лабораторной работы студенту необходимо выполнить внутреннюю компоновку, т.е. разместить экипаж, пассажиров, грузы, топливо и оборудование.

Кабина экипажа размещается в носовой части фюзеляжа и отделяется от остальных отсеков перегородкой. Размеры ее зависят от состава экипажа. На военных самолетах в зависимости от назначения может быть один или два члена экипажа, на пассажирских и транспортных в зависимости от веса и протяженности авиалиний в экипаж входит от двух до четырех человек: командира корабля, второго пилота, бортинженера, и штурмана.

Рис.2.3. Компоновка кабины экипажа

1,2 – кресла лётчиков; 3,4 – кресла для дополнительных членов экипажа.

Наиболее важным элементом компоновки кабины экипажа является размещение летчиков. При этом должен быть обеспечен хороший обзор летчику: вправо-влево 20-30º от линии визирования, вверх-вниз – 16-20º и оптимальное расстояние до приборной доски и командных постов управления.

Типовая компоновка кабины экипажа пассажирского самолета приведена на рис.2.3.

Размеры и компоновка пассажирских кабин зависит от количества пассажиров и класса пассажирского оборудования.

В настоящее время применяется три класса, отличающихся друг от друга комфортом и условиями обслуживания.

В первом, высшем классе обеспечивается наибольшее расстояние между рядами сидений, удельный объем кабины на одного пассажира до 1,8м 3 , возможность отдыха в креслах в полулежащем положении.

Второй, или туристский класс характеризуется более плотным размещением пассажиров, удельным объемом, равным 1,5м 3 , отклонением спинки сидения до 36º.

Третий, экономический класс имеет еще более плотное размещение пассажиров с удельным объемом 0,9-1,2м 3 отклонением спинки сидений до 25º.

Пассажирские сидения выполняются в виде блоков из двух или трех сидений. Размеры кресел зависят от класса пассажирской кабины. Основные размеры кресел приведены в таблице.

Основные размеры пассажирских кресел

пассажир-

Расстояние между

подлокотниками

Ширина подлокотника

Длина подушки сидения

Высота сидения над полом

Ширина спинки

Длина спинки от подушки сидения

Угол отклонения спинки от вертикали

Высота сидения

Ширина блока сидения

Расстояние между рядами сидений

I й класс

2 й (турист)

3 й (эконом)

470 70 470 300 430 720 55 1100 1200 1420 960

440 50 450 320 430 700 36 1100 1030 1520 840

410 40 430 320 430 700 25 1100 970 1430 750

Пассажирские кабины по длине фюзеляжа обычно делятся на несколько салонов, разделяемых перегородками.

При компоновке пассажирских салонов следует избегать размещения пассажиров в плоскости вращения винтов и в зоне расположения двигателей. Эти объемы в фюзеляже используются для размещения кухонь, гардеробов или багажных помещений.

На больших самолетах для обслуживания пассажиров в состав экипажа включаются бортпроводники: на 30-50 пассажиров – один бортпроводник. Каждый бортпроводник обеспечивается откидным сидением в служебном помещении за кабиной экипажа или радом с входными дверями.

Багаж пассажиров располагается под полом пассажирских кабин или в специальных багажных отсеках в хвостовой части фюзеляжа из расчета 0,25м 3 на одного пассажира.

При полетах в зимнее время необходимо предусмотреть гардеробы. Площадь под гардеробы составляет 0,035-0,05м 2 на одного пассажира. Рекомендуется гардеробы размещать вблизи входных дверей.

На самолетах с большой длительностью полета пассажиры обеспечиваются бесплатным питанием. Для размещения продуктов питания и соответствующего оборудования на самолете предусматривается буфет-кухня с объемом 0,1-0,2м 3 на одного пассажира.

Количество туалетных помещений зависит от количества пассажиров и продолжительности полета. При продолжительности полета от 2 до 4 часов рекомендуется один туалет на 40 пассажиров. Площадь пола туалетных помещений должна быть не менее 1,5-1,6м 2. Туалетные помещения следует располагать в носовой и хвостовой частях фюзеляжа, вблизи входных дверей.

Оборудование самолетов принято объединять в блоки, комплексы и размещать в специальных технических отсеках. Сами технические отсеки располагаются в местах, к которым тяготеет определенная часть оборудования.

В качестве одного из вариантов можно привести следующую компоновку блоков оборудования.

В носовой части фюзеляжа перед герметической кабиной располагаются агрегаты радиолокационной станции (РЛС), аппаратура и антенны захода на посадку.

Подполом герметической кабины располагается гидравлическое оборудование и оборудование для систем управления самолетом.

В фюзеляже непосредственно за кабиной размещается кислородное, радиотехническое, электрооборудование и противопожарное оборудование;

в центроплане – оборудование, обслуживающее топливную систему, средства механизации, шасси; в хвостовой части фюзеляжа – оборудование для элементов управления самолетом и радиотехнические блоки.

Многие люди задаются вопросом: как устроен самолет? Ведь именно благодаря специальной конструкции такого транспортного средства и используемым материалам столь большие и тяжелые лайнеры способны подниматься в воздух. Основные составляющие:

  • крылья;
  • фюзеляж;
  • «оперение»;
  • взлетно-посадочное устройство;
  • силовая установка;
  • управляющие системы.

Каждая из этих составляющих имеет особое устройство и может содержать различные типы комплектующих элементов в зависимости от конкретной модели летательного аппарата. Подробное описание частей самолета позволит не только узнать, как он устроен, но и понять принцип, по которому удается осуществлять перелеты на высокой скорости.

Устройство самолета

Фюзеляж – это корпус, который включает в себя несколько составляющих. Он собирает в единую систему крылья, хвостовое оперение, силовую установки, шасси и прочие элементы. В корпусе размещаются пассажиры, если рассматривать устройство пассажирского самолета. Также в этой части размещают оборудование, топлива, двигатели и шасси. В этой части размещают любую полезную нагрузку, будь то пассажиры, багаж или транспортируемое оборудование/товары. Например, в военных воздушных судах в этой части располагают оружие и прочую военное снаряжение. Характерная обтекаемая каплеобразная форма корпуса позволяет минимизировать сопротивление во время движения воздушного судна.

Крылья

Перечисляя основные части самолета, нельзя не упомянуть крылья. Крыло летательного аппарата состоит из двух консолей: правой и левой. Главная функция этого элемента заключается в создании подъемной силы. В качестве дополнительной помощи для этих целей многие современные самолеты имеют фюзеляж с плоской нижней поверхностью.

Крылья самолета также оснащены необходимыми «органами» для управления во время полета, а именно для осуществления поворотов в ту или иную сторону. Для улучшения характеристик взлета и посадки крылья дополнительно оснащены взлетно-посадочными механизмами. Они регулируют движение самолета в момент взлета, пробега, а также осуществляют контроль взлетной и посадочной скоростей. В некоторых моделях устройство крыла самолета позволяет размещать в нем топливо.

Помимо двух консолей крылья также оснащены двумя элеронами. Это подвижные составляющие, благодаря которым удается управлять воздушным судном относительно продольной оси. Функционируют эти элементы синхронно. Однако отклоняются они в разные стороны. Если один наклоняется вверх, то второй – вниз. Подъемная сила на консоли, отклоненной вверх, уменьшается. За счет этого осуществляется вращение фюзеляжа.

Вертикальное оперение

Оперение

Устройство самолета также включает «хвостовое оперение». Это еще один значимый элемент конструкции, который включает киль и стабилизатор. Стабилизатор имеет две консоли, подобно крыльям летательного аппарата. Главная функция этой составляющей заключается в стабилизации движения воздушного судна. Благодаря этому элементу самолету удается сохранять требуемую высоту во время полета при различных атмосферных воздействиях.

Киль – составляющая «оперения», которая отвечает за сохранение нужного направления во время движения. Для смены направления или высоты предусмотрено два специальных руля, с помощью которых осуществляется управление этими двумя элементами «оперения».

Стоит учитывать, что части самолета названия могут иметь разные. Например, «хвостом» воздушного судна в некоторых случаях называют заднюю часть фюзеляжа и оперение, а иногда это понятие используют, чтобы обозначить исключительно киль.

Шасси

Эта часть воздушного судна также называется взлетно-посадочным устройством. Благодаря данной составляющей обеспечивается не только взлет, но и мягкая посадка. Шасси представляет собой целый механизм различных устройств. Это не просто колеса. Устройство взлетно-посадочного механизма намного сложнее. Одна лишь его составляющая (система уборки/выпуска) представляет собой непростую установку.

Силовая установка

Именно за счет работы двигателя авиалайнер приводится в движение. Силовая установка обычно располагается либо на фюзеляже, либо под крылом. Чтобы понять, как работает самолет, надо разобраться в устройстве его двигателя. Основные детали:

  • турбина;
  • вентилятор;
  • компрессор;
  • камера сгорания;
  • сопло.

В начале турбины расположен вентилятор. Он обеспечивает сразу две функции: нагнетает воздух и охлаждает все составляющие мотора. За этим элементом находится компрессор. Под большим давлением он переносит поток воздуха в камеру сгорания. Здесь воздух перемешивается с топливом, и полученная смесь поджигается. После этого поток направляется в основную часть турбины, и она начинает вращаться. Устройство турбины самолета обеспечивает вращение вентилятора. Таким образом обеспечивается замкнутая система. Для работы двигателя требуется лишь постоянно подводить воздух и топливо.

Сборка простых самолётов

Классификация воздушных судов

Все авиалайнеры подразделяются на две основные группы в зависимости от назначения: военные и гражданские. Главное отличие самолетов второго типа заключается в наличии салона, который оборудован специально для транспортировки пассажиров. Пассажирские воздушные суда, в свою очередь, делятся на магистральные ближние (летают на расстояния до 2000 км), средние (до 4000 км) и дальние (до 9000 км). Для перелетов на большие расстояния используются авиалайнеры межконтинентального типа. Также в зависимости от разновидности и устройства такие летательные аппараты различаются по весу.

Конструктивные особенности

Устройство авиалайнера может быть различны в зависимости от конкретного типа и предназначения. Самолеты, сконструированные по аэродинамической схеме, могут иметь разную геометрию крыльев. Чаще всего для пассажирских полетов используют воздушные судна, которые выполнены по классической схеме. Вышеописанная компоновка основных частей относится именно к таким авиалайнерам. У моделей этого типа укорочена носовая часть. Благодаря этому обеспечивается улучшенный обзор передней полусферы. Главным недостатком таких самолетов является относительно невысокое КПД, что объясняется необходимостью применения оперения большой площади и, соответственно, массы.

Еще одна разновидность самолетов носит наименование «утка» из-за специфической формы и расположения крыла. Основные части в этих моделях размещены не так, как в классических. Оперение горизонтальное (устанавливающееся в верхней части киля) расположено перед крылом. Это способствует увеличению подъемной силы. А также благодаря такому расположению удается уменьшить массу и площадь оперения. При этом оперение вертикальное (стабилизатор высоты) функционирует в невозмущенном потоке, что значительно повышает его эффективность. Самолеты этого типа более просты в управлении, чем модели классического типа. Из недостатков следует выделить уменьшение обзора нижней полусферы из-за наличия оперения перед крылом.

Хотя конструктивно различные самолёты могут сильно отличаться друг от друга, в большинстве случаев они состоят из одних и тех же основных компонентов (рис. 2-4). Как правило, конструкция самолёта включает в себя фюзеляж, крылья, хвостовое оперение, шасси и силовую установку.

Фюзеляж. Фюзеляж является центральной частью самолета и предназначен для размещения экипажа, пассажиров и груза. Он также обеспечивает структурную связность крыльев и хвостового оперения. В прошлом при конструировании самолёта использовали открытую ферменную структуру, изготовленную из дерева, стали или алюминиевых трубок (рис. 2-5). Самые популярные типы конструкций фюзеляжа современных самолётов — монокок (по-французски «единая оболочка») и полумонокок. Более подробно эти типы конструкций обсуждаются ниже в настоящей главе.

Крылья. Крылья -— это аэродинамические поверхности, прикреплённые к обеим сторонам фюзеляжа. Они обеспечивают подъемную силу, поддерживающую самолёт во время полёта. Существует множество конструкций крыльев, различных по форме и размерам. Механика создания крылом подъёмной силы рассмотрена в главе 4, «Аэродинамика полёта».

Крылья могут прикрепляться к верхней, средней или нижней частям фюзеляжа. Такие конструкции носят названия «высоко-», «средне-» и «низкоплан» соответственно. Число крыльев также может варьироваться. Самолёты с единственным набором крыльев называются монопланами, а с двумя наборами крыльев — бипланами (рис. 2-6).

Многие самолёты с высокорасположенным крылом снабжены внешними стяжками, или подкосами, которые во время полёта и приземления передают нагрузку на фюзеляж. Поскольку стяжки располагаются примерно посередине крыла, такой тип конструкции называется полуконсольным крылом. Некоторые самолёты с высокорасположенным и большинство самолётов с низкорасположенным крылом имеют крылья консольной, или свободнонесущей, конструкции, которые способны нести нагрузку без внешних подкосов.

Принципиальными структурными частями крыльев являются лонжерон, рёбра жёсткости и стрингеры (рис. 2-7). Они усиливаются фермами, двутавровыми балками, тюбингом или другими средствами (включая обшивку). Конфигурация рёбер жёсткости крыла определяет форму и толщину крыла (его аэродинамический профиль). В большинстве современных самолётов топливные баки являются составной частью структуры крыла либо представляют собой гибкие контейнеры, встроенные внутрь него.

К задней кромке крыла прикрепляются два типа управляющих поверхностей: элероны и закрылки. Элероны располагаются примерно от середины каждого крыла до его конца и двигаются в противоположных направлениях, создавая аэродинамические силы, заставляющие самолёт испытывать крен. Закрылки располагаются от фюзеляжа примерно до середины каждого крыла. При полёте в крейсерском режиме они обычно совпадают с поверхностью крыла. Во время взлёта и посадки закрылки выдвигаются, увеличивая подъёмную силу крыла (рис. 2-8).

Альтернативные типы крыльев. Некоторое время назад Федеральное управление граж-данской авиации США (FAA) расширило номенклатуру сертифицируемых им ЛА, добавив категорию «сверхлёгких ЛА». В конструкции этих летательных аппаратов для управления полётом и создания подъёмной силы могут использоваться самые различные методы. Они подробно рассмотрены в главе 4, «Аэродинамика полёта», описывающей воздействие средств управления на подъёмные поверхности разного типа (как крыла обычной конфигурации, так и предусматривающего изгиб либо перенос веса). Так, крыло ЛА, управляемого переносом веса, имеет сильно изогнутую форму, и управление полётом обеспечивается изменением положения тела пилота (рис. 2-9).

Хвостовое оперение. Хвостовое оперение включает в себя всю хвостовую группу и состоит как из неподвижных поверхностей (вертикальный и горизонтальный стабилизаторы), так и подвижных (руль направления, руль высоты и один или несколько триммеров) (рис. 2-10).

Руль направления прикрепляется к задней части вертикального стабилизатора. Во время полёта он используется для перемещения носа самолёта влево или вправо, в то время как руль высоты, прикреплённый к задней части горизонтального стабилизатора, перемещает нос самолёта вверх или вниз. Триммеры — это небольшие движущиеся части задней кромки управляющей поверхности, позволяющие снизить управляющее воздействие на рычаги управления. Триммеры могут устанавливаться на элероны, руль направления и/или руль высоты и контролируются из кабины пилота.

Второй тип хвостового оперения вообще не предполагает наличия руля высоты. Вместо этого оно включает в себя единый горизонтальный стабилизатор, вращающийся на центральном шарнире. Такая конструкция носит название «цельноповоротный стабилизатор». Стабилизатор, как и руль высоты, приводится в действие штурвалом управления. Например, когда шарнир отводится назад, цельноповоротный стабилизатор поворачивается таким образом, что задняя его кромка поднимается вверх. Цельноповоротные стабилизаторы снабжены антикомпенсатором, который устанавливается вдоль их задней кромки (рис. 2-11).

Антикомпенсатор перемещается в том же направлении, что и задняя кромка стабилизатора, и делает стабилизатор менее чувствительным. Помимо этого, антикомпенсатор работает в качестве триммера, снижая управляющее усилие и помогая сохранять цельноповоротный стабилизатор в желаемом положении.

Шасси. Шасси обеспечивает поддержку самолёта во время пар-ковки, руления, взлёта и посадки. Самый распростра-нённый тип шасси - колёсный, но самолёты также мо-гут оборудоваться поплавками для посадки на воду или лыжами для посадки на снег (рис. 2-12).

Шасси состоит из трёх колёс — двух основных и третьего, расположенного либо спереди, либо в задней части самолёта. Шасси с задним колесом носит название «шасси обычной схемы».

Самолёты с шасси обычной схемы иногда называют «самолетами с хвостовым колесом». Когда третье колесо располагается на носу самолёта, его называют «носовым колесом», а вся конструкция носит название «трёхколёсное шасси». Управляемое носовое или хвостовое колесо позволяет контролировать движение самолёта на земле. Большинство самолётов — как с носовым, так и с хвостовым колесом — управляется с помощью педалей руля направления. Некоторые самолёты могут управляться посредством тормозов с раздельным приводом на правое и левое основные колеса.

Силовая установка. Силовая установка включает в себя двигатель и воз-душный винт. Основная функция двигателя — обеспечивать вращение воздушного винта. Он также вырабатывает электроэнергию, является источником вакуума для некоторых бортовых инструментов, а в большинстве одномоторных самолётов — источником тепла для пилота и пассажиров (рис. 2-13).

Двигатель закрывается обтекателем или мотогондолой (различные типы кожуха). Назначение обтекателя или мотогондолы — снижать лобовое сопротивление самолета, а также обеспечивать охлаждение двигателя, направляя поток воздуха вокруг двигателя и цилиндров.

Воздушный винт, устанавливаемый перед двигателем, превращает момент вращения двигателя в тягу — тянущую вперед силу, которая позволяет перемещать самолёт в воздухе. Воздушный винт может также устанавливаться в задней части ЛА (винт толкающего типа). Воздушный винт — это вращающаяся аэродинамическая поверхность, которая обеспечивает тягу посредством создания аэродинамической силы. За поверхностью винта образуется область низкого давления, а перед ней — высокого. Разница давлений толкает воздух сквозь винт, и самолёт движется вперёд.

Эффективность воздушного винта определяется двумя параметры:
- угол установки лопасти винта, измеряемый между хордой лопасти и плоскостью вращения винта;
- шаг винта, определяемый как расстояние, которое проходит винт вперед за одно обращение (как бы ввинчиваясь в твердое тело).

Две эти величины, вместе взятые, позволяют оценить эффективность работы воздушного винта. Винты обычно подбираются к определенной комбинации конструкции и силовой установки ЛА таким образом, чтобы можно было достичь максимального кпд двигателя. Они могут тянуть или толкать ЛА (в зависимости от расположения двигателя).

Субкомпоненты. Субкомпонентами ЛА являются планер, электросистема, система управления полётом и тормозная система.

Планер — базовая структура ЛА, сконструированная таким образом, чтобы выдерживать все аэродинамические нагрузки, а также напряжения, связанные с весом топлива, экипажа и груза. Основная функция электросистемы ЛА — вырабатывать, регулировать и распределять электроэнергию внутри него. Электросистема может питаться от различных источников: например, генераторов переменного тока с приводом от двигателя, вспомогательных блоков питания или внешних источников. Она используется для питания навигационных приборов жизненно важных агрегатов (таких, как антиобледенительная система и т.д.), а также для обслуживания пассажиров (например, для освещения кабины).

Система управления полётом объединяет в себе устройства и системы, управляющие положением ЛА: воздухе и, в результате, траекторией его полёта. В большинстве самолётов обычной схемы используются тонкокромочные управляющие поверхности на шарнирах называемые рулями высоты (для тангажа), элеронами (для крена) и рулями направления (для рыскания). Поверхности контролируются из кабины ЛА, пилотем или автопилотом.

На самолёты обычно устанавливаются гидравлические тормозные системы с дисковыми или барабанными тормозами, аналогичными автомобильным. Дисковый тормоз состоит из нескольких пластин (колодок), которые оказывают давление на располагающийся между ними вращающийся диск, жестко связанный со ступицей колеса. В результате увеличения трения между диском и колодками колёса постепенно замедляют вращение, вплоть до полной остановки. Диски и колодки изготавливаются либо из стали (как в автомобилях), либо из углеродного материала, который легче и способен поглощать больше энергии. Тормозные системы самолётов используются, главным образом, на этапе посадки, поглощая при этом огромное количество энергии, поэтому продолжительность их жизни измеряется в количестве посадок, а не в километрах.

ЛЯ ного различных типов самолетов можно увидеть те - *** перь в воздухе - от маленького ПО-2 до громадного турбовинтового пассажирского корабля ТУ-114. Но все самолеты имеют общие черты своего устройства, и для того чтобы получить представление об устройстве само­лета, достаточно познакомиться с одним из типов.

На авиационных праздниках обычно участвуют само­леты ЯК-18 и ЯК-П. На рис. 1 показано звено самоле­тов ЯК-18 в полете, а на рис. 2 этот самолет изображен для наглядности в полуразобранном виде. Это двухмест-

;) От греческих слов «аэр» - воздух и «динамис» - сила.

Пая учебно-тренировочная машина. Самолет ЯК-11 изоб­ражен на обложке книги-это двухместный учебно­тренировочный истребитель, развивающий значительно большую скорость, чем ЯК-18.

На этих самолетах советские летчики-спортсмены за­воевали несколько рекордов.

Главными частями самолета являются: крыло с эле­ронами, фюзеляж, хвостовое оперение, силовая установ­ка, шасси и хвостовое колесо, рулевое управление.

Крыло предназначено поддерживать, «нести» машину в воздухе. Оно состоит из центральной части (рис. 3), накрепко соединяемой с фюзеляжем, и так называемых консолей. Каркас крыла изготовлен из двух дюралюми-

Ниевых ) балок - лонжеронов, которые скреплены дюр­алюминиевыми ребрами - нервюрами. На задней части крыла имеются шарнирно соединенные с ним небольшие крылышки - элероны. С их помощью летчик может вы­правлять крен самолета или, наоборот, накренять ма­шину.

Фюзеляж - это корпус самолета. К нему крепятся крылья и силовая установка. В нем размещены кабины

Экипажа и пассажиров, грузы, а также баки с горючим. Каркас фюзеляжа сделан из стальных труб.

Хвостовое оперение - горизонтальное и вертикаль­ное- служит для изменения и сохранения равновесия самолета в полете. Рулем высоты летчик может изменять продольное положение самолета (наклонять самолет вниз и вверх), а руль направления играет примерно ту же роль, что и руль лодки. Стабилизатор и киль - неподвиж­ные поверхности, они способствуют устойчивому равнове­сию самолета в воздухе.

Силовая установка на самолете ЯК-18 состоит из поршневого двигателя воздушного охлаждения и двухло­пастного воздушного винта.

Шасси и хвостовое колесо дают возможность осуще­ствлять взлет и посадку. Самолет ЯК-18, как и большин­ство современных самолетов, имеет убирающееся в по­лете шасси. Подъем и выпуск шасси летчик производит при помощи специального механизма.

Рулевое управление - «нервы» самолета. На самолете ЯК-18 рулевое управление позволяет управлять машиной из обеих кабин - инструктора и ученика (рис. 4). Перед сидением каждого летчика находится ручка рулевого управления 1 с ее помощью летчик действует рулем вы­соты и элеронами. Под ногами расположены педали 2; с их помощью летчик движет рулем направления.

Посмотрим, как летчик действует рулями (работу ру­лей объясним дальше).

Ручка рулевого управления с помощью кронштейна 3 соединена шарнирно с продольной вращающейся трубой 4 (расположенной на полу кабины). Благодаря этому летчик может наклонять ручку назад и вперед, вправо и влево. Когда он наклоняет ее назад, как говорят «берет ручку на себя», нижний конец ее отклоняется вперед и прикрепленным к нему тросом 5 при посредстве качалки 6 тянет верхний конец рычажка 8 руля высоты. В ре­зультате руль отклоняется вверх, и самолет поднимает нос; когда же летчик «дает ручку от себя», происходит обратное: руль высоты отклоняется вниз и самолет опус­кает нос.

Когда летчик отклоняет ручку вправо, продольная труба 4, к которой прикреплена ручка, вращается тоже вправо; это движение передается через качалки и тяги 9, 10 и 11 на элероны 12, причем правый элерон подни­мается, а левый опускается, и самолет кренится вправо. Если летчик отклоняет ручку влево, то левый элерон под­нимается, а правый опускается, и самолет кренится влево.

Педали 2 соединены тросами 7 с рычажком 13 руля направления. Когда летчик нажимает правую педаль, руль отклоняется вправо, и самолет начинает разворачи­ваться вправо. При нажиме на левую педаль руль откло­няется влево, и самолет начинает разворот влево.

Почему самолет может делать виражи) и фигуры? Какие силы заставляют тяжелую машину легко ку­выркаться в воздухе? Как летчик управляет этими сила­ми в криволинейном полете? Конечно, это все те же аэродинамические …

П Еред посадкой летчик выключает двигатель или убав­ляет его обороты до самых малых. Самолет начи­нает плавно снижаться по наклонной траектории. Такой спуск самолета называют планированием. Чтобы легче понять поведение самолета …