Как в Беларуси следят за радиационным фоном? Америций: как уберечься от смертельно опасного продукта распада плутония, выброшенного Чернобылем Радиация белоруссия.

Радиационная обстановка на территории республики Беларусь

РАДИАЦИОННАЯ ОБСТАНОВКА НА

ТЕРРИТОРИИ РЕСПУБЛИКИ БЕЛАРУСЬ

Радиационный мониторинг в Республике Беларусь проводился в соответствии с «Инструкцией о порядке проведения наблюдений за естественным радиационным фоном и радиоактивным загрязнением атмосферного воздуха, почвы, поверхностных и подземных вод на пунктах наблюдений радиационного мониторинга», утвержденной приказом Министерства природных ресурсов и охраны окружающей среды Республики Беларусь от 01.01.2001 г. № 000 – ОД и «Перечнем находящихся в ведении Министерства природных ресурсов и охраны окружающей среды Республики Беларусь пунктов наблюдений радиационного мониторинга», утвержденных постановлением Министерства природных ресурсов и охраны окружающей среды Республики Беларусь от 01.01.2001 г. № 20 (Постановление № 20).

В соответствии с Постановлением № 20 на территории Республики Беларусь в четвертом квартале 2016 года функционировали 42 пункта наблюдения радиационного мониторинга, на которых ежедневно проводятся измерения мощности дозы гамма-излучения (далее – МД). На 24 пунктах наблюдения, расположенных на всей территории Республики Беларусь, контролировались радиоактивные выпадения из атмосферы (отбор проб производился с помощью горизонтальных планшетов). На 5 пунктах наблюдения (Мозырь, Нарочь, Пинск, Браслав и Мстиславль) ежедневно производился отбор проб для определения суммарной бета-активности естественных атмосферных выпадений, на 19 пунктах – один раз в 10 дней.


На 7-ми пунктах наблюдений, расположенных в городах Браслав, Гомель , Минск, Могилев , Мозырь, Мстиславль, Пинск проводился отбор проб радиоактивных аэрозолей в приземном слое атмосферы с использованием фильтровентиляционных установок. Из них: на 5-ти пунктах, расположенных в зонах воздействия атомных электростанций сопредельных государств, отбор проб проводится ежедневно; на двух пунктах (Минск и Могилев) – отбор проб проводится в дежурном режиме (1 раз в 10 дней).

Вся информация по МД гамма-излучения, радиоактивным выпадениям из атмосферы и содержанию радиоактивных аэрозолей в воздухе вносилась в автоматизированный банк данных , где хранятся метеоданные.

В четвертом квартале 2016 года радиационная обстановка на территории республики оставалась стабильной, не выявлено ни одного случая превышения уровней МД над установившимися многолетними значениями.

Как и прежде, повышенные уровни МД зарегистрированы в пунктах наблюдений городов Брагин и Славгород (среднее значение за квартал 0,54 мкЗв/ч и 20 мкЗв/ч соответственно), находящихся в зонах радиоактивного загрязнения (рис. 13, рис. 14).

Рисунок 13 - Среднее значение МД в пунктах наблюдения радиационного мониторинга Гомельской области в 4 квартале 2016 года

Рисунок 14 - Среднее значение МД в пунктах наблюдения радиационного мониторинга Могилевской области в 4 квартале 2016 года

На остальной территории Республики Беларусь уровни МД составляли от 0,10 до 0,12 мкЗв/ч.

1. Уровни мощности дозы гамма-излучения, радиоактивность естественных выпадений и аэрозолей в воздухе на территории Республики Беларусь соответствовали установившимся многолетним значениям.

2. На территориях, загрязненных в результате катастрофы на Чернобыльской АЭС, в пунктах наблюдения радиационного мониторинга повышенные уровни МД как и прежде сохранялись в городах Брагин и Славгород (0,54 мкЗв/ч и 20 мкЗв/ч соответственно). На остальной территории Республики Беларусь уровни МД составляли от 0,10 до 0,12 мкЗв/ч.

3. Оперативная информация об уровнях мощности дозы гамма-излучения в зонах наблюдения Чернобыльской, Игналинской, Смоленской и Ровенской АЭС, поступавшая в четвертом квартале 2016 года, свидетельствует, что радиационная обстановка оставалась стабильной.

4. Максимальные среднемесячные значения суммарной бета-активности радиоактивных выпадений из атмосферы и значения суммарной бета-активности концентрации аэрозолей в приземном слое атмосферы были значительно ниже контрольных уровней суммарной бета-активности.

* Место дислокации подразделений пограничных войск

Радиационный фон и карты загрязнения

Скачать:

После величайшей ядерной катастрофы на Чернобыльской АЭС (ЧАЭС) в 1986 г. на огромных территориях выпало большое количество радиоактивных осадков (радионуклидов). Предлагаем Вашему вниманию фрагменты карт загрязнения Брестской области Цезием-137 (период полураспада 30 лет).

Расстояние от Чернобыльской АЭС до Домачево составляет 452 км.

Данные измерений мощности дозы гамма-излучения (мкЗв/ч) на сети радиационного мониторинга в Республике Беларусь

Естественный радиационный фон в Беларуси составляет 0,10 мкЗв/ ч

Карты загрязнения Цезием-137 Брестской области

(рис.1) По состоянию на 1998г.

(оранжевым цветом показана зона загрязнения от 1 до 5 Ku/км²)
(куплено на www.beltc.info )

(рис. 2

(рис. 3

(скачено с www.chernobyl.gov.by )

(рис.4) Карта загрязнения Цезием-137 г.п. Домачево и соседних деревень (1998г.)

Предоставил: Администратор

Показания дозиметра Radex RD 1503 в Домачево

Радекс РД1503 - это бытовой карманный прибор, который оценивает радиационную обстановку по величине мощности амбиентного эквивалента дозы гамма-излучения (далее - мощности дозы) с учетом загрязненности объектов источниками бета-частиц или по величине мощности экспозиционной дозы гамма-излучения (далее - мощности экспозиционной дозы) с учетом загрязненности объектов источниками бета частиц. Применяется для оценки уровня радиации на местности, в помещениях и для оценки радиоактивного загрязнения материалов и продуктов.

Для нашей местности радиационный фон (природный) составляет 10-11 мкР /ч (микроРентген в час). А все что выше, это техногенный фактор - Чернобыль.

Фотографии:

(возле "полосы") 95,5КБ

(неподалеку от заброшенного памятника погибшим пограничникам) 189КБ

(возле "системы") 230КБ

(неподалеку от заброшенного памятника погибшим пограничникам) 165КБ

(как вы все знаете гранит и др. горные породы излучают ионизирующее излучение, в чем я и убедился) 164КБ

(на фоне слева антенна Велком, а справа МТС) 73КБ

(на фоне бара "Чабарок") 167КБ

Подписание соглашения по строительству АЭС на фоне катастрофы в Японии заставило еще раз вздрогнуть неокрепшие после Чернобыльской трагедии нервы белорусов. Что из себя представляет радиация? Как и в каких дозах она влияет на человека? Можно ли избежать облучения в повседневной жизни? Мы решили полезным будет еще раз напомнить, что есть что в аспекте влияния излучения на человека.

Чаще всего, когда говорят о радиации, имеют в виду "ионизирующее" излучение, связанное с радиоактивным распадом. Хотя облучает человека также магнитное поле или ультрафиолетовый свет (неонизирующее облучение), рассказывает председатель Национальной комиссии по радиационной защите при Совете министров Яков Кенигсберг .

Единицы измерения радиоактивности

Наиболее распространенными единицами измерения радиоактивности почвы и продуктов питания являются Беккерель (Бк) и Кюри (Ки). Обычно активность указывается на 1 кг продуктов питания. На картах указывается активность на единицу площади, например, км 2 . Но уровень загрязнения территории 1Ки/км2 сам по себе еще ничего не говорит о том, какое облучение получили люди, живущие на этой территории. Мерой вредного воздействия радиоактивного излучения на человека является доза облучения, которая измеряется в Зивертах (Зв).

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель,Бк

1 Ки = 3,7×10 10 Бк

число радиоактивных распадов в единицу времени

Мощность дозы

зиверт в час, Зв/ч

рентген в час, Р/ч

1 мкР/ч=0,01 мкЗв/ч

уровень излучения в единицу времени

Поглощенная доза

радиан, рад

1 рад=0,01 Гр

количество энергии ионизирующего излучения, переданное определенному объекту

Эффективная доза

Зиверт, Зв

1 рем=0,01 Зв

доза облучения, учитывающая различную

чувствительность органов к радиации

Так, в зивертах на единицу времени измеряют уровень радиационного фона. Естественный радиационный фон на земной поверхности составляет в среднем 0,1-0,2 мкЗв/ч. Опасным для человека считается уровень выше 1,2 мкЗв/ч. К слову, вчера уровень радиации в 20 км от аварийной японской атомной электростанции "Фукусима-1" - зафиксирован уровень радиации в 161 мкЗв/ч. Для сравнения: по некоторым данным, после взрыва на ЧАЭС уровень радиации доходил местами до нескольких тысяч мкЗв/час.

Что касается Беккереля, он служит единицей измерения радиоактивности воды, почвы и т.д. на единицу, в которой измеряется эта вода, почва... Так, по последним данным в Токио превышен уровень радиации в водопроводной воде: содержание радиоактивного йода в воде составляет 210 беккерелей на один литр.

А Грей нужен для измерения поглощённой дозы излучения тем или иным объектом.

Но вернемся к Зивертам:

В соответствии с белорусским законодательством, допустимая доза облучения для населения составляет 1 мЗв в год, а для профессионалов, работающих с источниками ионизирующего излучения - 20 мЗв в год.

Кроме того, воздействие радиоактивного излучения на человека раньше вычислялось в такой единице как бэр (биологический эквивалент рентгена). Сегодня для этого используют Зиверты. В этой единице можно оценить влияние источников радиации в быту, к примеру. Так, годовая доза от просмотра телевизора по 3 часа в день - 0,001 мЗв. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв., одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Посчитайте и сравните: 20 мЗв - это средний допустимый уровень облучения для работников атомной промышленности в год.

Дополнительно берут во внимание также излучение бетонных жилищ - до 3 мЗв в год и естественную дозу облучения от окружающей среды - более 2 мЗв в год. Любопытное сравнение: естественное облучение возле монацитовых залежей в Бразилии - 200 мЗв в год. И люди с этим живут!

Влияние радиации на организм человека

Радиация в привычном для человека понимании (т.е. ионизирующее облучение) оказывает определенное воздействие на организм человека. Воздействие радиации на человека называют облучением . Основу этого воздействия составляет передача энергии радиации клеткам организма. Так, один из эффектов воздействия - детерминированный - проявляет себя с определенного порога и зависит от дозы облучения.

"Наиболее ярким его проявлением при облучении части или всего тела является острая лучевая болезнь , которая развивается только с определенного порога и имеет различные степени тяжести. Теоретически лучевая болезнь может проявиться при облучении дозой равной 1 зиверту (это самая слабая степень лучевой болезни)", - рассказывает Яков Кенигсберг. Для сравнения: согласно нашей таблице, доза в 0,2 зиверта увеличивает риск раковых заболеваний, а 3 зиверта угрожает жизни облученного.

К детерминированному эффекту также относят лучевые ожоги , которые возникают как при облучении человека большими дозами радиации, так и при контакте с кожей. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей. Такие ожоги, к слову, лечатся гораздо хуже, чем химические или тепловые.

С другой стороны, радиация может проявить себя через длительное время после облучения, вызвав т.н. стохастический эффект. Это эффект выражается в том, что среди облученных людей может увеличиваться частота определенных онкологических заболеваний . Теоретически возможны также генетические эффекты, но на данный момент специалисты относят их к теории, так как на человеке они никогда не были выявлены. По информации ученых, даже у 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней.

Кроме того, различные эксперты отмечают, что облучение помимо ожогов и лучевой болезни может вызвать нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевую катаракту. Последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

"Мы не можем сказать точно, у какого конкретного заболевания даже при получении одинаковой дозы облучения может развиться или не развиться какое-либо онкологическое заболевание", - отмечает Я.Кенигсберг.

В стране с большим количеством облученных людей возможно повышение уровня онкологической заболеваемости. В то же время заболевания могут быть вызваны как облучением, так и химическими вредными веществами, вирусами и др. Например, у японцев, облученных после бомбардировки Хиросимы, первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более, а некоторые - через 20 лет.

На сегодня известно, какие опухоли могут быть связаны с облучением. В числе их - рак щитовидной железы, рак молочной железы, рак определенных частей кишечника.

***

Кстати, помимо искуственных радионуклидов (йода, цезия, стронция), которые “ударили” по белорусам после Чернобыльской трагедии, в организм попадают и естественные радионуклиды . Наиболее распространенные среди них - калий-40, радий-226, полоний-210, радон-222, -220. Например, основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении (радон высвобождается из земной коры и концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды). Относительно немного радона выделяют такие строительные материалы, как дерево, кирпич и бетон. Большей удельной радиоактивностью обладают, например, гранит и пемза, также используемые в качестве строительных материалов.

Проникновение радионуклидов в продукты питания

Радионуклиды проникают в организм с продуктами питания, водой и через загрязненный воздух. Например, в результате ядерных испытаний практически весь земной шар был загрязнен долгоживущими радионуклидами. Из почвы они попадали в растения, из растений - в организмы животных. А к человеку - с молоком и мясом этих животных, к примеру, рассказывает Яков Кенигсберг.

"Сегодня вся продукция, которая производится в Беларуси в общественном и частном секторе, контролируется, - отмечает он. - Кроме того, в лесхозах есть специальные карты, на которых обозначены места, где можно, а где нельзя собирать грибы и ягоды".

Если уровень радиации в воздухе человек может проверить самостоятельно, купив соответствующий прибор, то для того, чтобы проверить, например, содержание радионуклидов в "дарах природы", нужно обратиться в специальную лабораторию. Такие лаборатории есть в каждом районном центре - в системе Министерства сельского хозяйства и продовольствия, Минздрава, Белкооперации.

Кроме того, снизить риск радиоактивного заражения через пищу можно, если готовить еду определенным образом.

Проверьте, нет ли рядом с вами АЭС, завода или НИИ атомной тематики, хранилища радиоактивных отходов или ядерных ракет.

Атомные электростанции

В настоящее время в России действуют 10 атомных электростанций и еще две строятся (Балтийская АЭС в Калининградской области и плавучая АЭС «Академик Ломоносов» на Чукотке). Подробнее о них можно прочитать на официальном сайте Росэнергоатома.

В то же время, атомные электростанции на пространстве бывшего СССР нельзя считать многочисленными. По состоянию на 2017 г. в мире эксплуатируются 191 АЭС, в том числе 60 в США, 58 в Европейском союзе и Швейцарии и 21 в Китае и Индии. В непосредственной близости от российского Дальнего Востока работают 16 японских и 6 южно-корейских АЭС. Весь список действующих, строящихся и закрытых АЭС, с указанием их точного расположения и технических характеристик, можно найти в Википедии.

Заводы и НИИ атомной тематики

Радиационно-опасными объектами (РОО), помимо АЭС, являются предприятия и научные организации атомной отрасли и судоремонтные заводы, специализирующиеся на атомном флоте.

Официальная информация по РОО по регионам России — на сайте Росгидромета, а также в ежегоднике «Радиационная обстановка на территории России и сопредельных государств» на сайте НПО «Тайфун».

Радиоактивные отходы


Радиоактивные отходы низкой и средней активности образуются в промышленности, а также в научных и медицинских организациях по всей стране.

В России их сбором, транспортировкой, переработкой и хранением занимаются дочерние предприятия Росатома — РосРАО и Радон (в Центральном регионе).

Кроме того, РосРАО занимается утилизацией радиоактивных отходов и отработавшего ядерного топлива со списанных атомных подводных лодок и кораблей ВМФ, а также экологической реабилитацией загрязненных территорий и радиационно-опасных объектов (таких, как бывший завод по переработке урана в Кирово-Чепецке).

Информацию об их работе в каждом регионе можно найти в экологических отчетах, опубликованных на сайтах Росатома, филиалов РосРАО, и предприятия Радон.

Военные атомные объекты

Среди военных атомных объектов наиболее экологически опасны, по-видимому, атомные подводные лодки.

Атомные подводные лодки (АПЛ) называются так потому, что работают на атомной энергии, за счет которой приводятся в действие двигатели лодки. Некоторые из АПЛ также являются носителями ракет с ядерными боеголовками. Однако известные из открытых источников крупные аварии на АПЛ были связаны с эксплуатацией реакторов или же с другими причинами (столкновение, пожар и др.), а не с ядерными боеголовками.

Атомные энергетические установки имеются также и на некоторых надводных кораблях ВМФ, таких как атомный крейсер «Петр Великий». Они также создают определенный экологический риск.

Информация по местам базирования АПЛ и атомных кораблей ВМФ показана на карте по данным открытых источников.

Второй тип военных атомных объектов — подразделения РВСН, имеющие на вооружении баллистические ядерные ракеты. Случаев радиационных аварий, связанных с ядерным боекомплектом в открытых источниках не обнаружено. Текущее расположение соединений РВСН показано на карте по информации Министерства обороны.

На карте нет пунктов хранения ядерного боезапаса (боеголовок ракет и авиабомб), которые также могут представлять экологическую угрозу.

Ядерные взрывы

В 1949-1990 годах в СССР была реализована обширная программа из 715 ядерных взрывов в военных и промышленных целях.

Испытания ядерного оружия в атмосфере

С 1949 по 1962 гг. СССР произвел 214 испытаний в атмосфере, в том числе 32 наземных (c наибольшим загрязнением окружающей среды), 177 воздушных, 1 высотный (на высоте более 7 км) и 4 космических.

В 1963 г. СССР и США подписали договор о запрете ядерных испытаний в воздухе, воде и космосе.

Семипалатинский полигон (Казахстан) — место испытания первой советской ядерной бомбы в 1949 г. и первого советского прототипа термоядерной бомбы мощностью 1,6 Мт в 1957 г. (он же был и самым крупным испытанием за историю полигона). Всего здесь было произведено 116 атмосферных испытаний, включая 30 наземных и 86 воздушных.

Полигон на Новой Земле — место беспрецедентной серии сверхмощных взрывов в 1958 и 1961-1962 гг. Всего было испытано 85 зарядов, включая самый мощный в мировой истории — «Царь-бомбу» мощностью 50 Мт (1961 г.). Для сравнения, мощность атомной бомбы, сброшенной на Хиросиму, не превышала 20 кт. Кроме того, в бухте Черная Новоземельского полигона изучались поражающие факторы ядерного взрыва на объекты флота. Для этого в 1955-1962 гг. были произведены 1 наземный, 2 надводных и 3 подводных испытания.

Ракетный испытательный полигон «Капустин Яр» в Астраханской области — действующий полигон российской армии. В 1957-1962 гг. здесь произвели 5 воздушных, 1 высотный и 4 космических испытания в ракетном исполнении. Максимальная мощность воздушных взрывов составляла 40 кт, высотного и космических — 300 кт. Отсюда же в 1956 г. была запущена ракета с ядерным зарядом 0,3 кт, упавшая и разорвавшаяся в Каракумах в районе г. Аральск.

На Тоцком полигоне в 1954 г. проводились военные учения, в ходе которых была сброшена атомная бомба мощностью 40 кт. После взрыва войсковым частям предстояло «взять» объекты, подвергшиеся бомбардировке.

Кроме СССР в Евразии ядерные испытания в атмосфере производил только Китай. Для этого использовался полигон Лобнор на северо-западе страны, примерно на долготе Новосибирска. В общей сложности в 1964-1980 гг. Китай произвел 22 наземных и воздушных испытания, включая термоядерные взрывы мощностью до 4 Мт.

Подземные ядерные взрывы

СССР осуществлял подземные ядерные взрывы с 1961 по 1990 гг. Изначально они были направлены на развитие ядерного оружия в связи с запретом проведения испытаний в атмосфере. С 1967 г. началось и создание ядерно-взрывных технологий в промышленных целях.

В общей сложности из 496 подземных взрывов 340 были произведены на Семипалатинском полигоне и 39 на Новой Земле. Испытания на Новой Земле в 1964-1975 гг. отличались высокой мощностью, включая рекордный (около 4 Мт) подземный взрыв в 1973 г. После 1976 г. мощность не превышала 150 кт. Последний ядерный взрыв на Семипалатинском полигоне был произведен в 1989 г., на Новой Земле — в 1990 г.

Полигон «Азгир» в Казахстане (вблизи российского г. Оренбурга) использовался для отработки промышленных технологий. С помощью ядерных взрывов здесь создавались полости в пластах каменной соли, а при повторных взрывах в них нарабатывались радиоактивные изотопы. Всего было произведено 17 взрывов мощностью до 100 кт.

За пределами полигонов в 1965-1988 гг. были выполнены 100 подземных ядерных взрывов в промышленных целях, в том числе 80 в России, 15 в Казахстане, по 2 в Узбекистане и Украине и 1 в Туркменистане. Их целью были глубокое сейсмозондирование для поиска полезных ископаемых, создание подземных полостей для хранения природного газа и промышленных отходов, интенсификация добычи нефти и газа, перемещение больших массивов грунта для строительства каналов и плотин, тушение газовых фонтанов.

Другие страны. Китай произвел 23 подземных ядерных взрыва на полигоне Лобнор в 1969-1996 гг., Индия — 6 взрывов в 1974 и 1998 гг., Пакистан — 6 взрывов в 1998 г., КНДР — 5 взрывов в 2006-2016 гг.

США, Великобритания и Франция производили все свои испытания за пределами Евразии.

Литература

Многие данные о ядерных взрывах в СССР являются открытыми.

Официальная информация о мощности, цели и географии каждого взрыва опубликована в 2000 г. в книге коллектива авторов Минатома России «Ядерные испытания СССР ». Здесь же приведена история и описание Семипалатинского и Новоземельского полигонов, первых испытаний ядерной и термоядерной бомб, испытания «Царь-бомбы», ядерного взрыва на Тоцком полигоне и другие данные.

Детальное описание полигона на Новой Земле и программы испытаний на нем можно найти в статье «Обзор советских ядерных испытаний на Новой Земле в 1955-1990 годах », а их экологических последствий — в книге «

Список атомных объектов, составленный в 1998 г. журналом «Итоги», на сайте Kulichki.com.

Предположительное расположение различных объектов на интерактивных картах

По сравнению с Гомелем Гродно казался совсем безопасным местом в Беларуси. Здесь никто не говорил о радиации, а дети не ездили на лечение в Канаду, Германию и даже Японию, как жертвы Чернобыля. Гродненская область действительно считается одним из самых незагрязнённых регионов Беларуси. В 1986 году 23% территорий Беларуси были загрязнены цезием-137 выше 1 Кюри на квадратный километр. В Гродненской области самый «летучий» радионуклид с недопустимой плотностью загрязнения «осел» в трёх районах: Новогрудском, Ивьевском и Дятловском, рассказывает "Гродненский зеленый портал".

- В регионе были зарегистрированы 84 населенных пункта с периодическим радиационным контролем, где плотность загрязнения цезия-137 от 1 до 5 Кюри на квадратный километр, в том числе в Новогрудском районе – 12, в Ивьевском – 50, Дятловском – 22, - говорит заведующий отделением радиационной гигиены Гродненского центра гигиены, эпидемиологии и общественного здоровья Александр Размахнин.
В зоне радиоактивного загрязнение расположено 5,2% лесных угодий Гродненской области. Распространение изотопов цезия-137 имело пятнистый характер, что хорошо видно на картах. Любопытно, что на карте Атласа современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси обозначено небольшое пятно с загрязнением цезия-137 от 5 до 15 Ки/кв.км (зона с правом на отселение) в Новогрудском районе. По прогнозам к 2046 году территория загрязнения радионуклидом с плотностью загрязнения от 1 до 5 Кюри на квадратный километр останется только в Новогрудском районе. Если сравнивать с Гомельской областью в том же 2046 году большая часть региона будет по-прежнему загрязнена цезием-137 от 1 до 5 Ки/кв.км, в отдельных районах - от 15 до 40 Ки/кв.км. Учёные выяснили, что за первые 10 лет после катастрофы жители загрязненных районов Гродненской области получили наименьшее облучение по сравнению с другими регионами страны. Для сравнения: показатели Гомельской области превышаются почти в 1 000 раз (Гомельская – 10 398 человеко-Зивертов, Гродненская – 133). Тем временем 30-летие со дня Чернобыльской катастрофы вроде как несёт и хорошие новости – полураспад «летучего» цезия завершился, а значит, территории должны быть чище, но…
- Полный распад цезия-137 длится 300 лет. С физической точки зрения сейчас этого дозообразующего радионуклида стало в два раза меньше. Вроде как опасность должна уменьшиться, а этого не произошло. Почему? Радионуклидов стало меньше, они погружаются в почву, где их «хватают и вытягивают» наружу корни растений. А снаружи люди, которые потеряли страх, собирают на этих территориях грибы, ягоды, пасут коров. Получается парадоксальная вещь – цезия становится меньше, а внутреннее облучение у жителей, которые едят эти продукты, становится больше. Чернобыль не ушёл, он рядом с нами, и иногда становится злее, чем был! Предстоят ещё чудеса: есть ещё плутоний, который сейчас «покоится» в зоне отчуждения (период полураспада 24 тысячи лет), но он, распадаясь, превращается в америций-241, а это такой же сильный и «подвижный» излучатель радиации. Территории, которые были загрязнены плутонием в 1986 году, станут в 4 раза больше к 2056 году, потому что плутоний превратится в америций, - говорит Алексей Яблоков.
_ Радиоактивное загрязнение территории Республики Беларусь йодом-131 на 10 мая 1986 г. rad.org.by «Йодный удар», который проходил с мая по июль 1986 года по Беларуси, стал причиной роста рака щитовидной железы (РЩЗ). Заболевание признаётся официально как главное медицинское последствие Чернобыльской катастрофы. Более 50% всех случаев РЩЗ в группе 0-18 лет за 20 лет после аварии возникло у детей, которым во время «йодного удара» было до 5 лет. По официальным данным, число людей, заболевшими раком (в момент катастрофы им было до 18 лет) увеличилось в 200 раз в период с 1989 по 2005 года. Кроме того, по данным Министерства здравоохранения РБ до катастрофы (1985 год) 90% детей относились к категории «практически здоровы». К 2000 году число таких детей составило менее 20%, а на сильно загрязненных территория Гомельской области – 10%. По данным официальной статистики, число детей-инвалидов в период с 1990 по 2002 года увеличилось в 4,7 раза.